

April 2018

Rust Case Study:

Chucklefish Taps Rust to
Bring Safe Concurrency to
Video Games

here
How Rust is providing a stable future for Chucklefish’s games

Copyright © 2018

The Rust Project Developers
All rights reserved

RUST AT CHUCKLEFISH 2018

2

Rust at Chucklefish

Chucklefish, an independent game studio based in London, publishes hit video games like
Stardew Valley and Starbound. Now, the company is developing its next game, code-named

Challenges with Existing Solutions for Game Programming

Most video games today are written in C++. Whether they’re 2D or 3D, video games
have many large data structures to hold the massive information necessary for the game to
render the graphics. The game needs to cache that data for quick access and, paradoxically,
also change the data frequently to be responsive. If a game is written in a garbage-collected
language like C# or Java, the game experience can be noticeably affected by pauses for

Screenshot of Chucklefish’s
upcoming game, Witchbrook

Witchbrook, using the Rust
programming language instead of
C++. Why the switch? Two main
reasons: to get better performance
on multiprocessor hardware and
to have fewer crashes during game
play.

Rust is known for enabling
fearless concurrent programming,
the ability to run code safely on
multiple processors at the same
time.

The team at Chucklefish is
excited about Rust because they’re
seeing fewer crashes and bugs than
with C++ without sacrificing
portability or requiring garbage
collection. After working with
Rust on Witchbrook, the
Chucklefish engineers decided to
also use Rust to build a scalable
web service for matchmaking in
the game Wargroove, planned for
release later in 2018.

RUST AT CHUCKLEFISH 2018

3

The first difficulty is that C++ is complex, even for experts, and dealing with that
complexity was taking up an inordinate amount of developers’ time. Chucklefish’s developers
had deep experience with modern C++ best practices. “We were 100% all-in on modern
C++,” says Catherine West, Technical Lead on Witchbrook and Starbound. But using the
most modern features wasn’t enough to tame the complexity of C++. West elaborates, “We
triggered undefined behavior all the time despite knowing quite a lot about how not to trigger
undefined behavior. We regularly encountered crashes due to iterator invalidation, expired
references, uninitialized values, destructor order, data races, and exception unsafety.”

While the undefined behavior
manifested in catastrophic ways, it
usually only affected a small subset of
users. The second and biggest motivator
for Chucklefish to switch away from
C++ was a need to write correct, fast
concurrent, and parallel code in order to
improve performance for everyone.
Modern consoles have less powerful
CPU cores but have multiple cores to
make up the difference. Previous
Chucklefish games had performance
issues because they were written as a
single core program first. Once the
performance problems came to light, it
was extremely difficult to rewrite those
programs so they would scale correctly

What took up even more time than crashes were intermittent problems and unexpected
behavior, as debugging these required tracing through a large code base. Often, after several
hours of work, the root cause of these problems would be identified as unintentional
undefined behavior. The amount of time spent on these issues had become unacceptable.

I was losing
performance
because the easy
and safe thing to do
was the slow thing.”
- Catherine West,
Technical Lead

“

across multiple processors. West recalls trying to fix structural performance problems while
maintaining memory safety: “I was losing performance because I was invoking copy
constructors needlessly. I was losing performance due to allocation, and I was losing
performance because the easy and safe thing to do was the slow thing.” Chucklefish needed
their next game to use multiple cores, and do so safely, to compete on consoles.

garbage collection. Chucklefish used C++ for previous games, but growing difficulties during
development and maintenance led the company to explore alternatives for their next game.

RUST AT CHUCKLEFISH 2018

4

How Rust Solves Complexity and Enables Safe Concurrent Code

The Rust type system brought immediate relief from the pain of dealing with complexity
in C++. Compared to using C++ with the type system and standard library APIs that have
been added on to C++ over the years, the Chucklefish developers found that the types and
APIs in Rust felt natural and required much less ceremony and maintenance of custom
wrapper code. Knowing that safe Rust has no undefined behavior reduced fear during
development. Using Rust meant no more long debugging sessions, in which multiple team
members spent hours trying to figure out what caused an intermittent problem.

Rust made it possible for the team at Chucklefish to create a game that takes advantage
of multiple cores without introducing crashes. West relates one experience of refactoring
Witchbrook’s engine to run systems in parallel with the help of Rust’s compiler: “I didn’t
do absolutely everything correctly; there were some logic bugs with the systems that I didn’t
order correctly. I still had to write some extra code to ensure that component- and resource
-locking would not deadlock with other systems without having to pay close attention to the
lock order, and this was to be expected. But, with those caveats out of the way, it more or
less worked on the first try.”

West now strongly prefers writing parallel and concurrent code in Rust. “Rust is one
of the few languages that really gives you a large amount of confidence that your parallel
and concurrent code is anywhere near correct.” This confidence translates to a fast,
robust game. Developers can spend their time getting the game logic correct, rather than
debugging subtle data races. If the Chucklefish team had had Rust’s safety guarantees
available earlier, it would have been possible to make Starbound fast on consoles with
less development effort than they’re currently expending on porting.

By switching to Rust, Chucklefish solved the complexity and concurrency problems
they were having with C++. They also saw some additional, unexpected benefits in using
the new language. In the past, the Chucklefish developers were hesitant to add third-
party dependencies to their C++ codebase, due to the tooling effort required and cross-
platform concerns for any code introduced. Rust’s package manager and build tool,
Cargo, made adding a dependency to Chucklefish’s build a breeze, even on the wide
variety of operating systems their games run on. Adding a pure Rust library as a
dependency was trivial to do, even on consoles. In the past, adding a single library had
taken days of work to successfully integrate on all supported platforms.

Additional Rust Benefits

RUST AT CHUCKLEFISH 2018

5

Rust: A Solid Choice

Rust unexpectedly eliminated another developer timesink for Chucklefish: dealing with
cross-platform differences. “Having multiple competing compilers is supposed to be a benefit of
C++, but most of the time when we would write code, it would break on whatever
architecture we weren’t actually developing on,” West said. “We had Continuous Integration
that would build on the three desktop architectures, and, more than weekly, we would write
code that broke on one or more of them.” Even after taking into account the ten days needed
to customize Rust for the Xbox, PS4, and Nintendo Switch consoles, Chucklefish saved time
previously spent debugging cross-platform idiosyncrasies.

Now that the team has familiarity with Rust, they’re looking to leverage Rust’s
advantages in other areas as well. The system to match players for their Wargroove game
needed to be scalable, as well as secure, reliable, and fast. Rather than bring in a web-focused
language like Node.js, Chucklefish chose to use Rust for this project and found it to be a good
fit. The new webservice is using high quality open source libraries that are available and
help make building a scalable web service in Rust straightforward.

Overall, Chucklefish is pleased with their choice to write their next game in Rust, even
though the project is not yet complete. Throughout the development process, the company
has seen performance improvements. They’ve also experienced the benefits of Rust’s safety
features, which have resulted in much less time spent on development and debugging tasks.
West concludes, “It’s not only important that it be possible to do a good design in a given
language, but that the language actively encourage it by making the bad design painful.
Rust does a fantastic job of this.”

